Para este tipo de problemas, aunque pueden ser resueltos por el método del Simplex, existe un método específico de más fácil resolución: el método del transporte o método simplificado del Simplex para problemas de transporte. Este método ahorra bastante tiempo y cálculos frente al método del Simplex tradicional.
Sin embargo el problema se modela de la misma forma.
Ejemplo
Un fabricante desea despachar varias unidades de un artículo a tres tiendas T1, T2, y T3. Dispone de dos almacenes desde donde realizar el envío, A y B. En el primero dispone de 5 unidades de este artículo y en el segundo 10. La demanda de cada tienda es de 8, 5, y 2 unidades respectivamente. Los gastos de transporte de un artículo desde cada almacén a cada tienda están expresados en la tabla:
T1 | T2 | T3 | |
A | 1 | 2 | 4 |
B | 3 | 2 | 1 |
¿Cómo ha de realizar el transporte para que sea lo más económico posible?
Determinar las variables de decisión y expresarlas algebraicamente. En este caso:
Determinar las restricciones y expresarlas como ecuaciones o inecuaciones dependientes de las variables de decisión. Dichas restricciones se deducen de la disponibilidad de unidades que hay en cada almacén así como de la demanda de cada tienda:
Expresar todas las condiciones implícitamente establecidas por la naturaleza de las variables: que no puedan ser negativas, que sean enteras, que solo puedan tomar determinados valores, ... En este caso las restricciones son que la cantidad de unidades no puede ser negativa y debe ser además un número entero:
Determinar la función objetivo:
PHPSimplex
Versión 0.81
Copyright ©2006-2025. Todos los derechos reservados.
Desarrollado por:
Daniel Izquierdo Granja
Juan José Ruiz Ruiz
Traducción a inglés por:
Luciano Miguel Tobaria
Traducción a francés por:
Ester Rute Ruiz
Traducción a portugués por:
Rosane Bujes